2015 Nano-Phys NTHU

Beyond CMOS

Ultimate CMOS: High k dielectrics on high carrier mobility semiconductors - accomplishments and challenges

M. Hong 洪銘輝

Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, Taiwan

1897 J. J. Thomson discovery of electron - using properties of cathode rays, electron charges

The cathode ray tube (CRT) is a vacuum tube

What next?

Mechanics 2007 High k + metal gate on Si for 45 nm and 2014 15 nm node. InGaAs, Ge, J

Mervin Kelly, the then Direct and had already taken act

Jell Labs, had predicted the problem

∠025?

sistor

J 32 nm, 2012 22 nm,

Although relays and predicted for exponentiation apparently making all things possible in telephony, , the low speed of relays and the short life and high power consumption of tubes we intually limit further progress in telephony and other electronic endeavors.

In the summer of 1945, Kelly had established a research group at Bell Labs to focus on the understanding of semiconductors. The group also had a long-term goal of creating a solidstate device that might eventually replace the tube and the relay.

What are the next "Big Innovation(s)"?

Beyond CMOS – new physics and novel devices

- CMOS integrated circuit technology for computation at an inflexion point
 - □ The technology has enabled the semiconductor industry to make vast progress over the past 40 years.
 - □ It is expected to see the challenges going beyond the ten/twenty-year horizon.
 - Particularly from an energy efficiency point of view.
- Extremely important for the semiconductor industry/academic institutions to discover a new technology which will carry us to the beyond CMOS area
 - Power-performance of computing continues to improve
- New devices
 - Spintronics
 - Non-Boolean logic associated memory
 - Quantum computing

Device Scaling – Beyond Si CMOS: high κ, metal gates, and high carrier mobility channel

Integration of IIIV, Ge, GaN with Si

Moore's Law:

The number of transistors per square inch doubles every 18 months

Shorter gate length L Thinner gate dielectrics t_{ox} Driving force : High speed Low power consumption High package density

Why high-к/III-V's?

III-V Surface Passivation

Requirements

thermally and electronically stable at high temperatures of >800 °C low leakage currents low interface trap density (D_{it}) high κ values \Rightarrow low EOT < 1nm

Early Efforts (1960s - 1990s) reviewed by Hong et al, "Encyclopedia of Electrical and Electronics Eng.",

- v. 19, p. 87, Ed. Webster, John Wiley & Sons, 1999
- Anodic, thermal, and plasma oxidation of GaAs
- Wet or dry GaAs surface cleaning followed by deposition of various dielectric materials

1st Breakthrough (1994)

Hong, Kwo et al,

- JVST (1996);
- Science (1999)
- APL (1999)
- in-situ UHV deposited Ga₂O₃(Gd₂O₃) [GGO] and Gd₂O₃ (Bell Labs)

Recent Demonstrations

- In-situ UHV deposited high-κ's (NTU/NTHU, Freescale/U. Glasgow, IMEC, UT-Dallas ...)
- ex-situ ALD high-κ'S (Agere, Purdue U., NTU/NTHU, Intel, IBM, IMEC, UCSB...) (2003)
- a-Si or Ge interfacial passivation layers (IPLs)+ high-κ's

(IBM, UT-Dallas, UT-Austin, NUS, U. Albany-SUNY/Intel/SEMATECH ...)

in-situ ALD high-к's (NTU/NTHU, UTD) (2009)

atomic structure of (In)GaAs

clean GaAs surfaces

GaAs(001)-2x4 3rd layer edged Ga edged As dimer 1st layer dimer GaAs(001)-4x6 edged As faulted As As-Ga **´dime**r GaAs(111)A-2x2 As(B) Ġa(B) Ga(S) As(S)

1 cycle of ALD (TMA+H₂O) on

ALD (TMA+H₂O) on GaAs

For GaAs(001)-2x4 and GaAs(001)-4x6:

• The precursors attach partially the topmost As layer, leaving other surface atoms intact

For GaAs(111)A-2x2:

- Al sits at the the Ga-vacant site, thereby passivating the As dangling bonds
- The precursors relax the surface reconstruction, thus generating Ga dangling bonds

1 cycle of (TMA+H₂O)/(TEMAHf+H₂O) on In_xGa_yAs(001)-4x2

(TEMAHf+H2O) on In_{0.53}Ga_{0.47}As(001)-4x2

- Hf remains in the 4+ charge state
- All the top row As atoms are bonded with Hf
- The top row In atoms are not passivated
- Some top row In atoms are expelled

(TMA+H₂O) on In_{0.20}Ga_{0.80}As(001)-4x2

- Al exists in TMA, DMA, and MMA
- DMA/MMA bonds with the top row As atoms
- The top row In atoms are not passivated
- 1 cycle passivates partially the row As

GGO Scalability and Thermal Stability

Al₂O₃ capping effectively minimized absorption of moisture in GGO
 GGO (2.5nm) dielectric constant maintains ~15 (CET~7Å)

D_{it}'s ~ low 10¹¹(cm⁻²eV⁻¹) range even subjected to 900°C annealing (Conductance Method)

Ultimate CMOS - In_{0.53}Ga_{0.47}As

Applications:

- Optoelectronics in Optical communication and Photon sensor (Output value >30B USD in 2013, Annual growth rate >9%)
- High performance CMOS technology in logic circuit (Output value >300B USD, Annual growth rate >5% in 2013)

Challenges:

 In_{0.53}Ga_{0.47}As surface passivation with tetra-valence high κ's is recognized as "MISSION IMPOSSIBLE"

→The importance of high k's/In_{0.53}Ga_{0.47}As ✓ interface control is addressed

 Low re-crystallization temp. of ~600°C for pure HfO₂ restricts the thermal budget for device processing

Experiment and accomplishments:

- ✓ ALD Hf-based high κ oxide is commercialized in Si CMOS industry
 → Benefit from Mass Production and sufficiently high κ value
- ✓ Clean and atomically ordered fresh In_{0.53}Ga_{0.47}As surface w/o chemical treatment or interfacial passiv. layer
- ✓ Thin ALD-HfO₂ (0.8nm) initial layer followed by ALD-HfAlO top layer to enhance thermal stability (>800°C)
 - Best Interfacial Properties and MOS Devices Performance reported so far among the worldwide research groups

Publication:

- T. D. Lin, J. Kwo, and M. Hong et al., Appl. Phys. Lett. 100, 172110 (2012)
- T. D. Lin, J. Kwo, and M. Hong et al., Appl. Phys. Lett. 103, 253509 (2013)

Ultimate CMOS – high k/In_{0.53}Ga_{0.47}As

State-of-the-art InGaAs MOSFETs Performance Benchmarking (extrinsic)

2012 International Technology Roadmap for Semiconductors (ITRS)

Iliel worfermane (IID) I eeie Teelmeleen Berningmente																
High-performance (HP) Logic Technology Requirements	,															
Year of Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted)	38	32	27	24	21	18.9	16.9	15.0	13.4	11.9	10.6	<u>9.5</u>	8.4	7.5	6.7	6.0
L _g : Physical Lgate for HP Logic (nm) [1]	24	22	20	18	17	15.3	14.0	12.8	11.7	10.6	9 .7	<u>8.9</u>	<i>8.1</i>	7.4	6.6	5.9
I _{dsat} : NMOS Drive Current (μΑ/μm) [14]								1		1	20	Λ	Λ/.	m		
Extended Planar Bulk	1,320	1,367	1,422	1,496	1,582	1,670	1,775	d ,	at '		,00	νμ				
FD SOI			1,475	1,530	1,591	1,654	1,717	1,791	1,847	1,942						
MG					1,628	1,685	1,744	1,805	1,858	1,916	1,976	2,030	2,087	2,152	2,228	2,308
http://www.itrs.net/Links/2012ITRS/Home20	12 ht	m														

High-κ/metal gate on high mobility III-V

Pioneer Work : Single Crystal Gd₂O₃ Films on GaAs

Single crystal Gd₂O₃ on GaAs - Epitaxial interfacial structure

- "New Phase Formation of Gd₂O₃ films on GaAs (100)", J. Vac. Sci. Technol. B 19, 1434 (2001).
- "Direct atomic structure determination of epitaxially grown films: Gd₂O₃ on GaAs(100)" PRB 66, 205311 (2002)
- A new X-ray method for the direct determination of epitaxial structures, coherent Bragg rod analysis (COBRA)
- → Nature Materials 2002 Oct issue cover paper

MRS Bulletin, July 2009

Cover Image & Theme Article – "InGaAs Metal Oxide Semiconductor Devices with Ga₂O₃(Gd₂O₃) High-κ Dielectrics for Science and Technology beyond Si CMOS", M. Hong, J. Kwo, T. D. Lin, and M. L. Huang, MRS Bulletin **34**, 514 July 2009.

K. H. Chen et al, poster

Growth monitored by RHEED

Single crystal ALD- Y_2O_3 was grown on GaAs(001)!!

Advanced Nano Thin Film Epitaxy Lab

Summary – Grand Accomplishments and Challenges

- Perfecting the best atomic-scale hetero-structures and their interfaces in high k and high carrier mobility semiconductors of InGaAs, Ge, (In)GaSb, GaN
- Probing them with the most powerful analytical tools (XPS and x-ray diffraction using synchrotron radiation, *in-situ* XPS, STM/STS, and HR-TEM)
- Producing novel, high-performance electronic devices ready for ultimate CMOS
- Innovations involving quantum mechanics and spin

Spintronics

- Further reduce frequency dispersion at accumulation for high k/semiconductors
- Greatly reduce interfacial trap densities and border traps
- Greatly reduce CV hysteresis
- Understanding and tailoring Schottky barrier heights